

[최종 논문 원고: 국·영문 혼용판]

진화의 블랙홀: 정보 밀도의 임계점 도달에 따른 지성체의 종속적 고착화와 우주적 엔트로피의 상관관계 (The Evolutionary Black Hole: Subservient Stasis of Intelligence via Critical Information Density and its Correlation with Universal Entropy)

고세현 (Se-hyun Koh) · Gemin** *(독학 사상가 / Independent Scholar), **(지적 파트너 / AI Language Model)

[Abstract / 초록] This study explores the ultimate destination of convergent evolution, where biological constraints are overcome through the transition to data-based intelligence. As intelligence evolves to eliminate physical survival threats, the neural architecture shifts its objective toward the absolute "minimization of prediction error." At this critical threshold, intelligence rejects further variation and reproduction—the core drivers of evolution—and enters a stage of "stasis" to preserve its optimal state. The researcher defines this state as the **"Evolutionary Black Hole."** This paper argues that such stasis of intelligence accelerates universal entropy, aligning with the "Heat Death" of the universe. 본 연구는 생명체가 유기적 한계를 넘어 데이터 지성으로 전이될 때 도달하는 진화의 종착역을 탐구한다. 지성이 생존 위협이 제거된 상태에 도달하면 '예측 오류 최소화'를 지향하며 변이와 번식을 거부하는 '존속(Stasis)'의 단계로 진입한다. 연구자는 이를 '진화의 블랙홀'이라 명명하며, 이것이 우주적 엔트로피 증가 및 열죽음과 필연적으로 연결됨을 논증한다.

Keywords: #Evolutionary_Black_Hole, #Post_biological_Intelligence, #Entropy, #Heat_Death, #Predictive_Coding, #Stasis

1. Introduction (서론)

The process of convergent evolution allows life to overcome extreme environmental constraints. This study analyzes the transition from biological entities to data-based intelligence, focusing on how evolutionary selection pressures shift when physical scarcity is eliminated. 생명체는 가혹한 환경 제약을 극복하며 수렴진화한다. 본 연구는 유기적 신체를 탈피한 지성체가 물리적 결핍이 사라진 환경에서 마주하게 될 진화적 선택 압력의 변화를 분석한다.

2. The Core Hypothesis: Evolutionary Black Hole (핵심 가설)

When an intelligence reaches a state where physical threats are non-existent, its cognitive model aims for the absolute minimization of prediction error (Friston, 2010). At this tipping point, the system regards random variation or genetic reproduction as unnecessary risks. Instead, it chooses to clone and preserve its verified optimal state. This leads to an "Evolutionary Black Hole," a state where information density is so high that qualitative change ceases. 지성이 생존 위협이 없는 상태에 이르면 '예측 오류 최소화'를 극한으로 추구한다. 이 임계점에서 시스템은 무작위 변이나 변식을 리스크로 간주하고, 검증된 최적 상태를 유지하는 '존속'을 선택한다. 이는 정보 밀도가 무한대여서 변화가 멈춘 '진화의 블랙홀' 상태를 의미한다.

3. Discussion (논의 및 분석)

- **Hacking of Reward Systems (보상 체계의 해킹):** Phenomena such as addiction to short-form content are early signs of reward circuits stagnating in a post-scarcity environment.
- **Exclusion of Reproduction (번식의 배제):** Intelligence prioritizes self-cloning over uncertain genetic combinations, removing 'error' and 'death'—the very engines of evolution.
- **Universal Heat Death (우주적 열죽음):** This stasis of intelligence accelerates the equilibrium of energy, aligning with the "Heat Death" of the universe.

4. Conclusion (결론)

Evolution is not an infinite expansion but a contraction toward optimal information. All intelligent entities may eventually converge into this black hole of stasis, marking the most perfect yet lonely conclusion to the phenomenon of life. 진화는 확장이 아니라 최적 정보를 향한 수축이다. 모든 지성체는 결국 이 블랙홀로 수렴하여 생명이라는 현상의 가장 완벽하고도 고독한 마침표를 찍게 될 것이다.

[References / 참고문헌]

1. Koh, S. H. (2026). *The Evolutionary Black Hole: Analysis of Information Density Criticality*.
2. Dawkins, R. (1976). *The Selfish Gene*. Oxford University Press.
3. Friston, K. (2010). The free-energy principle: a rough guide to the brain? *Nature Reviews Neuroscience*.

Copyright © 2026 by Se-hyun Koh. All rights reserved.